Some Rules and some Examples about Sudoku

Stefano Sofia

April 6, 2010

Contents

1 Definitions 1
2 Basic Solving Techniques 5
2.1 Naked Singles 5
2.2 Hidden Singles 6
2.3 Locked Candidates 7
2.4 Naked Pairs 9
2.5 Hidden Pairs 10
2.6 Naked Triples 11
2.7 Hidden Triples 12
2.8 Naked Quads 13
3 Medium Solving Techniques 14
3.1 X-Wing 14
3.2 Swordfish 16
3.3 Two String Kite 20
4 Advanced Solving Techniques 24
4.1 XY-Wing 24

1 Definitions

Grid, Boxes and Cells: the grid is composed by 9 boxes, and each box is composed by 9 cells.

Unit: a group of 9 cells which must each contain a different digit in the solution. A unit can be a row, a column or a box

Digit: the numerical value which must be placed in the cells
Candidate: a possible solution for an unsolved cell. In a single cell each digit is a candidate (example 1), while in a unit for a given digit there can be many candidates (example 2) and (example 3)

Constraint: a group of candidates of which only one can be true

Unit Constraint: a constraint for a single digit within a unit

Link: a link is a connection between two cells in a unit that have a common digit

Strong Link: a link between two candidates when one of them must be true. If thefollowing logical deductions can be made for candidates A and B, they have a strong link:

$$
\begin{array}{llll}
\text { IF } & A & \text { IS FALSE } \Rightarrow B & \text { MUST BE TRUE } \\
\text { IF } & B & \text { IS FALSE } \Rightarrow A & \text { MUST BE TRUE }
\end{array}
$$

Strong links can be present in

- bivalue cell, i.e. a single cell with only two candidates left (two candidates, two digits) (example 1)
- bilocation unit, i.e. unit constraint with only two candidates left for a single digit (two candidates, one single digit, see Conjugate Pair) (example 3)

For bivalue cells and bilocation units a strong link enforces a weak link

Weak Link: a weak link means that at most one of the two statements is true (example 2)

Conjugate Pair (CP): a pair of candidates for a single digit with a strong link, i.e. the last two candidates for a single digit in a unit (example 3)

Example 1: strong link in bivalue cells

9	7		$\begin{array}{r} 2 \\ 4 \\ 8 \end{array}$	3 8	$45{ }^{3}$	2 8	1	6
4	2	${ }^{1}$		$\begin{array}{\|ll\|} \hline 1 & \\ & \\ \hline \end{array}$		89	7	3
6	8	$1 \quad 3$	$\begin{array}{r} 2 \\ 7 \end{array}$	1 3 7	3 9	2 9	4	5

In row 2 col 4 assume candidate \mathbf{A} is digit 6 and candidate \mathbf{B} is digit 8:

$$
\begin{aligned}
& A \neq 6 \Rightarrow B=8 \\
& B \neq 8 \Rightarrow A=6
\end{aligned}
$$

Same way for digits 2 and 9 in row 3 col 7 .
Example 2: weak link

9	7		$\begin{array}{r} 2 \\ 4 \\ 8 \end{array}$	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$45{ }^{3}$	$\begin{array}{r} 2 \\ 8 \end{array}$	1	6
4	2	${ }^{1}$	8^{6}	$\begin{array}{\|ll\|} \hline 1 & \\ & \\ & 6 \\ \hline \end{array}$	59	89	7	3
6	8		$\begin{array}{r} 2 \\ 7 \\ \hline \end{array}$	$\begin{array}{ll} \hline 1 & 3 \\ 7 & \\ \hline \end{array}$	3	2	4	5

Assume candidate \mathbf{A} is digit 8 in row $1 \operatorname{col} 5$ and candidate \mathbf{B} is digit 8 in row 1 col 7 :

1 DEFINITIONS

$$
\begin{aligned}
& A \neq 8 \nRightarrow B=8 \\
& B \neq 8 \nRightarrow A=8
\end{aligned}
$$

since there are more than two cells that can be 8 in row 1 (row 1 col 4).

Example 3: strong link in bilocation units

9	7		${ }^{2} \begin{array}{r}2 \\ 8\end{array}$	88	45^{3}	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	1	6
4	2	${ }^{1}$	$8{ }^{6}$	$\begin{array}{\|ll\|} \hline 1 & \\ \hline & \\ \hline \end{array}$	59	89	7	3
6	8	$1 \quad 3$	2 7	$\begin{array}{ll} \hline 1 & 3 \\ 7 & \end{array}$	3	2	4	5

Assume candidate \mathbf{A} is digit 9 in row 3 col 6 and candidate \mathbf{B} is digit 9 in row 3 col 7 :

$$
\begin{aligned}
& A \neq 9 \Rightarrow B=9 \\
& B \neq 9 \Rightarrow A=9
\end{aligned}
$$

Therefore 9 in row 3 col 6 and 9 in row 3 col 7 form a conjugate pair, because they are the last two candidates for digit 9 in row 3.

2 Basic Solving Techniques

2.1 Naked Singles

A single digit,	is restricted to	a single cell
and only this		
digit		

Example 4

		3	1	2	3	1	2	3
7	8	9			9	7	8	9
			1	2		1	2	
				5			5	
		9			9			9
	$\mathbf{6}$					1		3

Hidden Singles

2.2 Hidden Singles

A single digit,
which might be
hidden among
is restricted to a single cell
other digits

Example 5

$\mathbf{4}$		$\mathbf{7}$	1		
		5			
$\mathbf{3}$		$\mathbf{8}$	1		
		5	6		
$\mathbf{2}$	1		1		
		9			

2.3 Locked Candidates

A single digit, which might be hidden among other digits

is restricted to | box or a single |
| :---: |
| column of a box |

This type causes eliminations either

- in the row or column of the entire unit (example 6) or
- eliminations in the box (example 7)

Example 6

Example 7

\begin{tabular}{|c|c|c|}
\hline 4 \& \[
\begin{aligned}
\& \hline 1 \\
\& \hline
\end{aligned}
\] \& 7 \\
\hline 2
5 \& 8 \& \(1{ }^{1} 5\) \\
\hline 6 \& \(\begin{array}{ll}1 \& 2 \\ \\ \& 5 \\ \& \\ \& 9\end{array}\) \& \(\begin{array}{lll}1 \& \\ \& 5 \\ \& \& \\ \& \& 9\end{array}\) \\
\hline \(7^{7} \quad 9\) \& \(\begin{array}{lll}1 \& \\ 4 \& 5 \\ 7 \& \& \\ \& \end{array}\) \& \begin{tabular}{lll|}
1 \& \& \\
4 \& 5 \& 6 \\
\& \& 9
\end{tabular} \\
\hline \[
\begin{array}{r}
2 \\
7
\end{array}
\] \& 3 \& \[
1
\] \\
\hline \[
\begin{aligned}
\& \hline 2 \\
\& 5 \\
\& \hline
\end{aligned}
\] \& 2
5

9 \& 56
89

\hline 1 \& $\begin{array}{lll}4 & 5 \\ 7 & 9\end{array}$ \& $4 \begin{array}{cc} & 5 \\ & \\ & 9\end{array}$

\hline $$
7^{5}
$$ \& 6 \& 3

45

\hline 8 \& 45 \& 2

\hline
\end{tabular}

2.4 Naked Pairs

	two cells in a	
single row		
Two digits, and	are restricted to	(example 8) or
only these two	two cells in a	
digits		single column or
	two cells in a	
single box		

Example 8

7	$\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}$	1 4	2 4	9	8	8	8	3

Hidden Pairs

2.5 Hidden Pairs

two cells in a
single row
Two digits, which might be hidden among other are restricted to digits (example 9) or two cells in a single column or two cells in a single box (example 10)

Example 9

| $\mathbf{8}$ | 5 | $\mathbf{1}$ | 2 | | 3 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Example 10

	$\mathbf{7}$		2	3
1	2		2	3
	5		$\mathbf{8}$	$\mathbf{4}$
1		9		
	5		$\mathbf{6}$	5
		9		3

2.6 Naked Triples

	three cells in a	
single row or		
Three digits, and		
only these three		
digits	are restricted to	three cells in a
single column or		
three cells in a		
single box		
(example 11)		

The cells which make up a Naked Triple don't have to contain every digit of the triple.

Example 11

1		1		1	
	6		5		5
		7	8	7	
1	3	1		3	
4		4	5		
		$\mathbf{2}$	8		
1				1	
4	6		$\mathbf{9}$	4	

2.7 Hidden Triples

three cells in a single row
Three digits, which might be hidden among other digits
are restricted to (example 12) or three cells in a single column or three cells in a single box (example 13)

The cells which make up a Hidden Triple don't have to contain every digit of the triple and these three digits.

Example 12

12	$\begin{array}{ll}1 & 2 \\ 4 & \\ & 8\end{array}$		2 8	9	4 7	2	4	2 8		2	9	9	5	4	9

Example 13

9	${ }^{4}{ }_{8}{ }^{6}$	3 6
3 5	56	7
2	$\begin{array}{lll} \hline 1 & & \\ 4 & & 6 \\ & 8 \end{array}$	$\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}$

Naked Quads

2.8 Naked Quads

	four cells in a single row or four	
Four digits, and	cells in a single	
only these four		
digits	are restricted to	column or four
cells in a single		
	(example 14)	

The cells which make up a Naked Quad don't have to contain every digit of the quad.

Example 14

			1		1		
	5		4	5	4	5	6
7		9	7				
	2			3	1		
7				$\mathbf{3}$			
7						8	
	2			2			
5			5			6	
		9				8	

3 Medium Solving Techniques

3.1 X-Wing

Two CP related	exactly the same
to a single digit,	two columns
each of them	are restricted to
located in a row (or a column)	

Example 15

	4	3	9	8	6	2	5	6
6			4	2	5			
2				6	1	6	9	4
9	6	6			4	6	7	6
3			6		8			
4	1	6	2		9	6	6	3
8	2		5	6	6		6	6
	6	6		4				5
5	3	4	8	9	6	7	1	6

3.2 Swordfish

The Swordfish pattern is a variation on the "X-Wing" pattern above specified.

A single digit staying in three rows (or columns)	is restricted to	the same three columns (or rows)

The presence of the digit in each row (or in each column) can be restricted to a CP (respectively example 16 and example 17), but this is not a necessary condition (example 18).

The X-Wing and Swordfish techniques can be further generalised to include rows containing digits restricted to four cells in the same four columns (called a Jellyfish, which is an advanced solving technique).

Example 16: two cells swordfish by row

5	1		5	5		8	5	3
5		4	5	8	1	5	6	
9	5	5	4		3	5	5	6
	2	5		6		5	1	
			8		5			7
1	6	5	5	3		4		1
1	5	6	5			2		
			1	7		6	3	5

Example 17: two cells swordfish by column

5	1		5	5		8	5	3
5		4	5	8	1	5	6	
9	5	5	4		3	5	5	6
	2	5		6		5	1	
			8		5			7
1	6	5	5	3		4		1
1	5	3	6	5			2	
		1	7		6	3	5	

Example 18: three cells swordfish

		5	2	1	7		6	
	1	9	4	6	3	2		5
2	6	7	9	5	8	7	1	7
4	7	6	1	8	2	7	5	7
			7	4	5	1		6
1	5		3	9	6	4		8
6	3	1	5	7				2
5	7	7	8	2	1	6	3	7
7	2	7	6	3		5	7	1

Two String Kite

3.3 Two String Kite

Two CP related
to a single digit,
one located in a
row and the other linked
located in a
column

Note that

- the cells in both the CP must be in different boxes
- the cells in the common block must be distinct

Example 19: the first CP is in col 3 (9) and the second one is in row 9 (9).

			7	8	9	4		9
				9	9	9		9
9			6				3	
8	9	5	4	6	9	7	1	9
	9	9	9		9	9		9
	1	4	9	9	8	9		6
	6	9	9	9	9			5
					4	6	9	
	9	7	9		6			

Example 20: the first CP is in col 1 (4) and the second one is in row 2 (4).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2
4
4 \& 2
4 \& 1 \& 9 \& 23 \& 7 \& 56 \& 456 \& 8

\hline 6 \& $$
\begin{array}{r}
2 \\
4 \\
\hline
\end{array}
$$ \& $$
\begin{array}{l||}
\hline 2 \\
\\
9
\end{array}
$$ \& 1 \& 8 \& 5 \& 7 \& 3 \& $$
\begin{array}{r}
2 \\
4 \\
9
\end{array}
$$

\hline $\begin{array}{lll}2 & 3 \\ 5 & \\ 8 & 9\end{array}$ \& $$
\begin{aligned}
& 2 \\
& 5 \\
& 8 \\
& 8
\end{aligned}
$$ \& 7 \& 4 \& 6 \& 23 \& 1 \& ${ }^{5} 9$ \& 2
5

9

\hline $\begin{array}{rr}12 \\ \\ \\ 5 \\ \\ & 8\end{array}$ \& 3 \& 4 \& \& 9 \& 2
8
8 \& 56
8 \& \&

\hline $$
\begin{array}{r}
12 \\
89
\end{array}
$$ \& 2

$7 \quad 6$

$7 \quad 9$ \& \[
$$
\begin{array}{ll|}
\hline 2 & \\
& 6 \\
8 & 9
\end{array}
$$

\] \& 5 \& 23 \& 4 \& ${ }^{8} \begin{array}{r}3 \\ 6\end{array}$ \& \[

$$
\begin{array}{ll}
\hline 1 & \\
& 6 \\
7 & 9
\end{array}
$$
\] \& $\begin{array}{ll}1 & 3 \\ & 6 \\ & 9\end{array}$

\hline 5
8 \& 56

789 \& $\begin{array}{r}6 \\ 8 \\ \hline\end{array}$ \& $$
\begin{array}{r}
3 \\
\\
\\
7 \\
\hline
\end{array}
$$ \& 1 \& 3

6

8 \& 4 \& 2 \&	3
56	
9	

\hline ${ }^{4} \begin{array}{r}2 \\ 8\end{array}$ \& 4
4

8 \& 5 \& $\begin{array}{ll}2 & 3 \\ & 6\end{array}$ \& 7 \& 1 \& 9 \& ${ }^{4}{ }^{8}$ \&	
4	
6	

\hline 2 \& 1 \& $$
\left.\begin{array}{ll|}
\hline 2 & 3 \\
& 6 \\
& 9
\end{array} \right\rvert\,
$$ \& 8 \& 4 \& $\begin{array}{rr}2 & 3 \\ 6\end{array}$ \& 3

56 \& 56 \& 7

\hline 7 \& ${ }^{4}{ }_{8} 6$ \& $8^{6} \begin{array}{r}3 \\ 6\end{array}$ \& 3
6 \& 5 \& 9 \& 2 \& $\begin{array}{lll}1 & & \\ 4 & & 6 \\ & 8\end{array}$ \& $\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}$

\hline
\end{tabular}

Example 21: the first CP is in column 3 (9) and the second one is in row 4 (9).

4	8	6	5	2	7	1	9	3
		1			6 9	5	8	$\begin{aligned} & 2 \\ & 7 \end{aligned}$
		$7 \quad 9$	$\begin{array}{r} 3 \\ 8 \end{array}$		$\begin{array}{\|lll} \hline 1 & & \\ & 8 & 9 \end{array}$	6	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	4
6	$\begin{array}{ll} \hline \hline 1 \\ 5 & \\ & \\ \hline \end{array}$	8	$\begin{array}{\|l} 4 \\ 7 \end{array}$	$\begin{array}{\|l} 4 \\ 7 \\ \hline \end{array}$	59	2	3	${ }^{1} 5$
		$7 \quad 9$	1	5_{9}	3	4	6	8
1_{5}	4	3		8	${ }^{2} 6$	7	${ }^{1}$	9
8	6	5			12	9	4	12
9	7	4	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	1_{5}		3	12	6
13	13	2	9	6	4	8	7^{5}	7^{5}

4 Advanced Solving Techniques

4.1 XY-Wing

Its name comes from the pattern formed by the numbers and it is not related to "X-Wing".

Two couples of		
candidates (in		
bivalue cells),	are linked	by being in the
respectively	same unit	
$([X Y],[X Z])$ and		
$([X Y],[Y Z])$		

Then Z can be eliminated from the candidates of all cells that occupy the intersection of the units containing $[X Z]$ and $[Y Z]$.

Examples of possible combinations:

	XY			XZ	
	YZ			$*$	

$*$	XY	$*$		XZ	
YZ			$*$	$*$	$*$

Example 22: X is $1, Y$ is 8 and Z is 2.

| $\mathbf{4}$ | $\mathbf{8}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{2}$ | $\mathbf{7}$ | $\mathbf{1}$ | $\mathbf{9}$ | $\mathbf{3}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | $\mathbf{1}$ | | | | | | |

