Some Rules and some Examples about Sudoku

Stefano Sofia

April 6, 2010

CONTENTS

Contents

1	Def	initions	1
2	Bas	sic Solving Techniques	5
	2.1	Naked Singles	5
	2.2	Hidden Singles	6
	2.3	Locked Candidates	7
	2.4	Naked Pairs	9
	2.5	Hidden Pairs	10
	2.6	Naked Triples	11
	2.7	Hidden Triples	12
	2.8	Naked Quads	13
3	Me	dium Solving Techniques	14
	3.1	X-Wing	14
	3.2	Swordfish	16
	3.3		20
4	Adv	vanced Solving Techniques	24
	4.1	XY-Wing	24

1 Definitions

Grid, Boxes and Cells: the grid is composed by 9 boxes, and each box is composed by 9 cells.

Unit: a group of 9 cells which must each contain a different digit in the solution. A unit can be a row, a column or a box

Digit: the numerical value which must be placed in the cells

Candidate: a possible solution for an unsolved cell. In a single cell each digit is a candidate (example 1), while in a unit for a given digit there can be many candidates (example 2) and (example 3)

Constraint: a group of candidates of which only one can be true

Unit Constraint: a constraint for a single digit within a unit

Link: a link is a connection between two cells in a unit that have a common digit

Strong Link: a link between two candidates when one of them must be true. If the following logical deductions can be made for candidates A and B, they have a strong link:

1 DEFINITIONS

IF A IS FALSE $\Rightarrow B$ MUST BE TRUE IF B IS FALSE $\Rightarrow A$ MUST BE TRUE

Strong links can be present in

- bivalue cell, i.e. a single cell with only two candidates left (two candidates, two digits) (example 1)
- bilocation unit, i.e. unit constraint with only two candidates left for a single digit (two candidates, one single digit, see **Conjugate Pair**) (example 3)

For bivalue cells and bilocation units a strong link enforces a weak link

- Weak Link: a weak link means that at most one of the two statements is true (example 2)
- Conjugate Pair (CP): a pair of candidates for a single digit with a strong link, i.e. the last two candidates for a single digit in a unit (example 3)

1 DEFINITIONS

Example 1: strong link in bivalue cells

9	7	5	2 4 8	8	3 4 5	8	1	6
4	2	5	8	1 6 8	5 9	8 9	7	3
6	8	1 3	7	1 3 7	3	2 9	4	5

In row 2 col 4 assume candidate ${\bf A}$ is digit 6 and candidate ${\bf B}$ is digit 8:

$$A \neq 6 \Rightarrow B = 8$$

$$B \neq 8 \Rightarrow A = 6$$

Same way for digits 2 and 9 in row 3 col 7.

Example 2: weak link

9	7	5	2 4 8	8	3 4 5	8	1	6
4	2	1 5	8	1 6 8	5 9	8 9	7	3
6	8	1 3	7	1 3 7	3	2 9	4	5

Assume candidate ${\bf A}$ is digit 8 in row 1 col 5 and candidate ${\bf B}$ is digit 8 in row 1 col 7:

1 DEFINITIONS

$$A \neq 8 \Rightarrow B = 8$$

 $B \neq 8 \Rightarrow A = 8$

since there are more than two cells that can be 8 in row 1 (row 1 col 4).

Example 3: strong link in bilocation units

9	7	3 5	2 4 8	8	3 4 5	2 8	1	6
4	2	5	6	1 6 8	5 9	8 9	7	3
6	8	1 3	7	1 3 7	3	2 9	4	5

Assume candidate ${\bf A}$ is digit 9 in row 3 col 6 and candidate ${\bf B}$ is digit 9 in row 3 col 7:

$$A \neq 9 \Rightarrow B = 9$$

 $B \neq 9 \Rightarrow A = 9$

Therefore 9 in row 3 col 6 and 9 in row 3 col 7 form a conjugate pair, because they are the last two candidates for digit 9 in row 3.

2 Basic Solving Techniques

2.1 Naked Singles

A single digit,		
and only this	is restricted to	a single cell
digit		

	3	1	2	3	1	2	3
			5			5	
7 8	8 9			9	7	8	9
		1	2		1	2	
			5			5	
	9			9			9
					1		3
(6		4				
					7	8	9

2.2 Hidden Singles

A single digit,		
which might be	is restricted to	o ginglo coll
hidden among	is restricted to	a single cell
other digits		

4	7	1 5	
		(9
		1	
3	8	5	6
			9
	1	1	
\parallel 2		5	
		9 9	9

2.3 Locked Candidates

A single digit, which might be hidden among other digits	is restricted to	a single row of a box or a single column of a box
---	------------------	---

This type causes eliminations either

- ullet in the row or column of the entire unit (**example 6**) or
- ullet eliminations in the box (example 7)

1	1 5 5 7 8	1 5 7	9	1 2 5 7 8	1 2 5 8	4	3	1 5 6 8
$\begin{bmatrix} 1 & \vdots \\ 4 & \end{bmatrix}$	3 1 3 4 5 7 8	2	6	1 4 5 7 8	1 5 8	9	5 8	1 5 8
1 4	9	1 4 5	2 4 5	1 2 4 5 8	3	2 6 8	2 5 6 8	7

П			1					
	4		1	5			7	
	2 5	3		8		1	5	3
	6		1	2 5	9	1	5	9
			1			1		
	5		4	5		4	5	6
7		9	7		9			9
	2			3		1		
7							8	
	2 5			2				
	5			5			5	6
		9			9		8	9
	_							3
	1		4	5		4	5	
			7		9			9
		3		•				3
7	5			6			4	5
	8		4	5		2		

2.4 Naked Pairs

	two cells in a
	single row
	(example 8) or
are restricted to	two cells in a
	single column or
	two cells in a
	single box
	are restricted to

	1 2	1	2				1	
7	4 5	4 5	4 5	9	6	6	6	3
					8	8	8	

2.5 Hidden Pairs

two cells in a single row
Two digits, which might be hidden among other digits

two cells in a two cells in a single column or two cells in a single box (example 10)

Example 9

8	2 5	1	7	5	6	7	9	4
3	2 5	4 6	2 4 7	1 5	9	1 6	8	1 2
9	7	4 6	2 4	8	1 3	5	2 6	1 2 3

7	2 3	2 3 5
1 2 5 9	8	4
1 5 9	6	3 5

2.6 Naked Triples

		three cells in a single row or
Three digits, and only these three digits	are restricted to	three cells in a single column or three cells in a
Ü		single box (example 11)

The cells which make up a Naked Triple don't have to contain every digit of the triple.

1		1			1	
	6		5 8			5
		7	8		7	
1	3	1		3		
$\parallel 4$		4	5 8			2
		7	8			
1					1	
$\parallel 4$	6		9		4	

2.7 Hidden Triples

Three digits, which might be hidden among other digits	are restricted to	three cells in a single row (example 12) or three cells in a single column or three cells in a single box (example 13)
---	-------------------	--

The cells which make up a Hidden Triple don't have to contain every digit of the triple and these three digits.

Example 12

Ī	1 2	1 2	1 2	2 3	2	1 2	3		
		4		4 6	4	6	6	5	4
İ		8	8 9	7	8	7 9	9		9

2.8 Naked Quads

		four cells in a
		single row or four
Four digits, and		cells in a single
only these four	are restricted to	column or four
digits		cells in a single
		box
		(example 14)

The cells which make up a Naked Quad don't have to contain every digit of the quad.

	1	1		
5	4 5	4	5	6
7 9	7			
2		1		
	3			
7			8	
2	2			
5	5			6
9			8	

3 Medium Solving Techniques

3.1 X-Wing

Two CP related to a single digit, each of them are restricted to located in a row (or a column)	exactly the same two columns (example 15) (or two rows)
---	---

	4	3	9	8	6	2	5	6
6			4	2	5			
2				6	1	6	9	4
9	6	6			4	6	7	6
3			6		8			
4	1	6	2		9	6	6	3
8	2		5	6	6		6	6
	6	6		4				5
5	3	4	8	9	6	7	1	6

3.2 Swordfish

The Swordfish pattern is a variation on the "X-Wing" pattern above specified.

A single digit		the same three
staying in three	is restricted to	columns (or rows)
rows (or columns)		columns (of lows)

The presence of the digit in each row (or in each column) can be restricted to a CP (respectively **example 16** and **example 17**), but this is not a necessary condition (**example 18**).

The X-Wing and Swordfish techniques can be further generalised to include rows containing digits restricted to four cells in the same four columns (called a Jellyfish, which is an advanced solving technique).

Example 16: two cells swordfish by row

	1		5	5		8	5	3
5				9	6	1		
		4	5	8	1	5	6	
9	5	5	4		3	5	5	6
	2	5		6		5	1	
			8		5			7
	6	5	5	3		4		1
			1	7		6	3	5
1	5	3	6	5			2	

Example 17: two cells swordfish by column

	1		5	5		8	5	3
5				9	6	1		
		4	5	8	1	5	6	
9	5	5	4		3	5	5	6
	2	5		6		5	1	
			8		5			7
	6	5	5	3		4		1
			1	7		6	3	5
1	5	3	6	5			2	

Example 18: three cells swordfish

		5	2	1	7		6	
7	1	9	4	6	3	2	7	5
2	6	7	9	5	8	7	1	7
4	7	6	1	8	2	7	5	7
			7	4	5	1		6
1	5	7	3	9	6	4	7	8
6	3	1	5	7				2
5	7	7	8	2	1	6	3	7
7	2	7	6	3		5	7	1

3.3 Two String Kite

Two CP related
to a single digit,
one located in a
row and the other
located in a
column

row CP related
are linked in a single box

Note that

- the cells in both the CP must be in different boxes
- the cells in the common block must be distinct

Example 19: the first CP is in col 3 (9) and the second one is in row 9 (9).

			7	8	9	4		9
				9	9	9		9
9			6				3	
8	9	5	4	6	9	7	1	9
	9		9	5	9	9		9
	1	4	9	9	8	9		6
	6	9	9	9	9			5
					4	6	9	
	9	7	9	2	6			

Example 20: the first CP is in col 1 (4) and the second one is in row 2 (4).

$\overline{}$	2	3		2						2 3	•	П								\equiv
\parallel_4	5	J	4			1			9		7		5	6	4	5	6		8	
4	9		4	9			-		9		'		9	U	4	9	O		O	
		-		2		2						\parallel							2	_
	6		4	Z		2			1	8	5		7			3		4	2	
	U		4		0		0		1	0	9		- 1			J		4		0
	0	0		0	9		9				0.6								0	9
	2	3		2		-	,		4	e	2 3	3	1			_			2	
	5			5		7			4	6			1			5			5	_
	8	9		8	9							Щ					9			9
1	2								2		2				1			1		
	5			3		4	Ŀ		6	9			5	6		5	6		5	6
	8							7			8		8		7					
1	2			2		2				2 3				3	1			1		3
					6		6		5		4			6			6			6
	8	9	7	8	9	8	9						8		7		9			9
									3		;	3								3
	5			5	6		6		6	1	(3	4			2			5	6
	8	9	7	8	9	8	9	7			8									9
T	2			2					2 3			Ï								3
4			4		6	Ę	Ó		6	7	1		9		4		6	4		6
	8			8												8				
	2					2	3				2 3	3		3						
				1			6		8	4		3	5	6		5	6		7	
		9					9													
							3		3			I			1			1		3
	7		4		6		6		6	5	9		2		4		6	4		6
				8		8										8				
Щ											1	Ш								

Example 21: the first CP is in column 3 (9) and the second one is in row 4 (9).

4	8	6	5	2	7	1	9	3
		1			6	5	8	7
		7 9	8		1 8 9	6	7	4
6	1 5 9	8	4 7	4 7	5 9	2	3	5
		7 9	1	5 9	3	4	6	8
1 5	4	3	2 6	8	2 6	7	1 5	9
8	6	5	7	7	1 2	9	4	1 2
9	7	4	2 8	1 5		3	1 2	6
1 3	1 3	2	9	6	4	8	5 7	5 7

4 Advanced Solving Techniques

4.1 XY-Wing

Its name comes from the pattern formed by the numbers and it is not related to "X-Wing".

Two couples of candidates (in bivalue cells), respectively $([XY], [XZ])$ and $([XY], [YZ])$	are linked	by being in the same unit
--	------------	---------------------------

Then Z can be eliminated from the candidates of all cells that occupy the intersection of the units containing [XZ] and [YZ].

Examples of possible combinations:

XY		XZ	
YZ		*	

*	XY	*		XZ	
YZ			*	*	*

Example 22: X is 1, Y is 8 and Z is 2.

4	8	6	5	2	7	1	9	3
		1			6	5	8	7
		7 9	8		8	6	7	4
6	1 5 9	8	4 7	4 7	5 9	2	3	1 5
		7 9	1	5 9	3	4	6	8
1 5	4	3	2 6	8	2 6	7	1 5	9
8	6	5	7	7		9	4	1 2
9	7	4	2 8	1 5	1 2 5 8	3	1 2	6
1 3	1 3	2	9	6	4	8	5 7	5 7